Vancouver, BC – Technology development in the life sciences sector received a much-needed boost with the announcement of five projects funded through Genome BC’s Proof of Concept (POC) Program. Genome BC’s program promises close to $9 million to accelerate the commercialization process for technological innovations in the life sciences. The program is intended to provide bridge funding to move innovations further down the development path towards potential commercialization and real-world applications.

The Proof of Concept program, which has garnered a great deal of interest from the life sciences sector as well as the applied sciences, is funding critical next steps in projects ranging from cancer to viticulture. Through this program researchers will be able to advance their genomics discoveries from innovation to a viable proof-of-concept model or prototype. Ultimately products arising from funding through the POC Program are expected to be distributed into the mainstream market.

A small initial pilot program, the Technology Development Innovation Fund (TDIF), made resources available to projects that demonstrated near-term commercialization potential. The initial intake of projects was successful therefore it warranted a larger strategy, hence the POC Program. Some projects in the initial pilot TDIF have already sold prototypes or engaged in commercial licensing agreements.

One of the TDIF projects funded through this program is: A Microfluidic Nanoparticle Formulator for Systemically Deliverable Genetic Materials. Genome BC’s funding of this project has been applied to the development of proof of concept and prototype materials used in instrumentation for nanomedicine. This work has contributed to technology that is the basis of a recent UBC spinoff company. “Genome BC provided our project with funding for important proof of concept studies. We believe that continued support from Genome BC for funding translational research with commercial potential is critical for growing the local biotechnology industry,” said Dr. Pieter Cullis, Professor, department of biochemistry and molecular biology at UBC.

For Dr. Cullis and other BC-based scientists, Genome BC’s funding will allow for necessary research and development so that ideas can be brought to full fruition. “The primary challenge associated with commercializing a product in BC revolves around the chasm that exists between idea conceptualization and making it a reality. For the most part, there is no shortage of innovative and creative ideas in BC; however, we continue to observe shortcomings when it comes to translating such ideas, which has been further exacerbated by the recent state of the capital markets. Genome BC’s Proof of Concept Program represents an attempt to ‘bridge’ that chasm in such a manner that that it not only accelerates the overall product development but also increases the probability of a successful launch,” said Don Enns, President of Life Sciences BC.

Genome BC’s Proof of Concept program is a partnership with Western Economic Diversification Canada (WD) and the Province of B.C. It represents a total investment of $8.7 million for new research projects, with $4.35M provided jointly by WD and the Province through the federal-provincial Western Economic Partnership Agreement and the remaining $4.35M provided by other co-funders in each research project. The provincial funding is part of the B.C. government’s $75M investment in Genome BC’s...
Scientists explore link between genes, antisocial behavior and cholesterol
Genome BC Geneskool workshops turn local students into budding scientists
A single drop of blood could detect heart disease and cancer
Key Executive in BC Life Sciences Joins Genome BC Team

2010
2009
2008
2007
2006

"I am proud that our government is supporting these five new opportunities for the life sciences sector," said the Honourable Lynne Yelich, Minister of State for Western Economic Diversification. "Today we are one step closer to commercializing technology that will affect the daily lives of not only British Columbians, but all Canadians."

"This program is helping to turn the discoveries of B.C.'s talented genomics researchers into marketable products, which will create jobs in our province and improve the health of people here and around the world," said Dr. Moira Stilwell, Parliamentary Secretary for Industry, Research and Innovation to B.C.'s Minister of Jobs, Tourism and Innovation. "I congratulate Genome BC on successfully piloting this program, and look forward to seeing the achievements of the five researchers who have received this funding."

Genome BC's competitive and peer-reviewed Proof of Concept program has ongoing opportunities for funding. Please see our website for details: www.genomebc.ca/poc

About Genome British Columbia:
Genome British Columbia is a catalyst for the life sciences cluster on Canada's West Coast, and manages a cumulative portfolio of over $450M in technology platforms and research projects. Working with governments, academia and industry across sectors such as forestry, fisheries, agriculture, environment, bioenergy, mining and human health, the goal of the organization is to generate social and economic benefits for British Columbia and Canada.

Examples of two other projects from TDIF program:
UBC's Dr. Carl Hansen's project is focused on creating a tool to deliver personalized medicine. The project, Rapid and Cost Effective Mutation Validation by Microfluidic Sequence Targeting, aims to transfer the power of genome sequencing from research laboratories to a clinical setting, by simplifying and standardizing the processes and ensuing data interpretation. Dr. Hansen now has a Collaborative Research Agreement with a biotech tools company.

Dr. Hongsen Ma's project, Microfluidics Technologies to Separate Cells Based on Rigidity, is developing a technique to filter large amounts of blood in order to capture metastatic tumour cells in a viable state. These tumour cells, found floating in the bloodstream of cancer patients, breed the more destructive metastatic cancer and, if gathered, can be used as a source to identify markers of disease. To date, there is no mechanical method for differentiating these cells, so they must be manually collected, which is a time-consuming and inefficient process. Genome BC's funding is allowing Dr. Ma to generate initial data, which has in turn generated additional funding to further the project. An assistant professor at UBC, Dr. Ma's long-term goal is to develop an automated system to capture circulating tumour cells.

Contact:
Jennifer Boon
Communications Specialist, Genome BC
Cell: 778-327-8374
Email: jboon@genomebc.ca

Comment and rate this release

Average Rating: ⭐⭐⭐⭐⭐

Comment: